Southern San Andreas-San Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations

نویسندگان

  • Paul Lundgren
  • Eric A. Hetland
  • Zhen Liu
  • Eric J. Fielding
چکیده

[1] We use ground geodetic and interferometric synthetic aperture radar satellite observations across the southern San Andreas (SAF)-San Jacinto (SJF) fault systems to constrain their slip rates and the viscosity structure of the lower crust and upper mantle on the basis of periodic earthquake cycle, Maxwell viscoelastic, finite element models. Key questions for this system are the SAF and SJF slip rates, the slip partitioning between the two main branches of the SJF, and the dip of the SAF. The best-fitting models generally have a high-viscosity lower crust (h = 10 Pa s) overlying a lower-viscosity upper mantle (h = 10 Pa s). We find considerable trade-offs between the relative time into the current earthquake cycle of the San Jacinto fault and the upper mantle viscosity. With reasonable assumptions for the relative time in the earthquake cycle, the partition of slip is fairly robust at around 24–26 mm/a for the San Jacinto fault system and 16–18 mm/a for the San Andreas fault. Models for two subprofiles across the SAF-SJF systems suggest that slip may transfer from the western (Coyote Creek) branch to the eastern (Clark-Superstition hills) branch of the SJF from NW to SE. Across the entire system our best-fitting model gives slip rates of 2 ± 3, 12 ± 9, 12 ± 9, and 17 ± 3 mm/a for the Elsinore, Coyote Creek, Clark, and San Andreas faults, respectively, where the large uncertainties in the slip rates for the SJF branches reflect the large uncertainty in the slip rate partitioning within the SJF system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR

[1] We compared four interseismic velocity models of the San Andreas Fault based on GPS observations. The standard deviations of the predicted secular velocity from the four models are larger north of the San Francisco Bay area, near the creeping segment in Central California, and along the San Jacinto Fault and the East California Shear Zone in Southern California. A coherence spectrum analysi...

متن کامل

Is there a discrepancy between geological and geodetic slip rates along the San Andreas Fault System?

Previous inversions for slip rate along the San Andreas Fault System (SAFS), based on elastic half-space models, show a discrepancy between the geologic and geodetic slip rates along a few major fault segments. In this study, we use an earthquake cycle model representing an elastic plate over a viscoelastic half-space to demonstrate that there is no significant discrepancy between long-term geo...

متن کامل

Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking

[1] Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (<10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signa...

متن کامل

Localized and distributed creep along the southern San Andreas Fault

We investigate the spatial pattern of surface creep and off-fault deformation along the southern segment of the San Andreas Fault using a combination of multiple interferometric synthetic aperture radar viewing geometries and survey-mode GPS occupations of a dense array crossing the fault. Radar observations from Envisat during the period 2003–2010 were used to separate the pattern of horizonta...

متن کامل

Change of apparent segmentation of the San Andreas fault around Parkfield from space geodetic observations across multiple periods

[1] Sequences of earthquakes are commonly represented as a succession of periods of interseismic stress accumulation followed by coseismic and postseismic phases of stress release. Because the recurrence time of large earthquakes is often greater than the available span of space geodetic data, it has been challenging to monitor the evolution of interseismic loading in its entire duration. Here ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009